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Summary: 

Cellular automata are discrete models used to simulate various processes often 

inspired by nature. It usually consists of a grid of cells where each cell is in one of a 

finite number of states. For every time step the state of each cell is updated based on a 

predefined rule with respect to its neighboring cells. For example in the famous Game of 

Life each cell in the “live” state  becomes “dead” if there are fewer than 2 live 

neighboring cells or more than 3 live cells. Whereas any dead cell can become live 

again if it is surrounded by exactly 3 live cells.  
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Fig 1. An alive cell becomes dead in the next iteration 

These simple rules can create complex simulations, which can be used for a 

number of applications. Examples include fluid simulators, traffic simulators, and 

random number generators.  

Our project idea was to create a cellular automaton for a hexagonal grid rather 

than the traditional square one. In addition to this, we decided to let the rules for the 

automata be customizable. Due to their specializations for working with large arrays, we 

decided that it would be best to create our program for GPUs, and code it using the 

CUDA framework, which we already had experience with.  

We an easy time at the beginning of our project creating both a serial version of 

the automata with no parallelism, and a simple CUDA version without any non-trivial 

optimizations. However we had difficult time improving the speed of our program 

beyond the naive cuda version, despite using several different strategies. One of our 

most involved attempts involved maintaining a list of all the cells which could possibly 

change state in a given cycle, but despite all the time we invested in this approach our 

final version of it was still slower than the naive implementation.  



Eventually we created a method which sped up our program significantly. This 

method involved creating a lookup table to compute the next state of a group of 8 cells, 

whose next states would all be computed together by the same CUDA thread. This 

algorithm gave us an execution time of up to 80 times that of the original serial 

implementation. 

 

Design process: 

The first challenge we came across was figuring out how to represent a 

hexagonal grid on a square array. This ended up having a fairly simple solution where 

we took the grid of connections for a traditional square automation but removed the 

upper-right and lower-left connections, as shown in the following graphs:  

 

While every cell is arranged in rectangular grid, the fact that each cell only has 

connections to 6 instead 8 other ones means that the cells are computed on as if they 

were arranged hexagonally.  

 



 

Writing the naive parallel algorithm was pretty straightforward. We assign one 

cell in the grid to each cuda thread, which computes the live neighbors around the cell 

and updates the cell correspondingly. 

 

 

__global__ void naive_kernel_single_iteration(grid_elem* curr_grid, grid_elem* next_grid) { 
 
  // cells at border are not modified 
  int image_x = blockIdx.x * blockDim.x + threadIdx.x + 1; 
  int image_y = blockIdx.y * blockDim.y + threadIdx.y + 1; 
 
  int width = constant_parameters.grid_width; 
  int height = constant_parameters.grid_height; 
  // index in the grid of this thread 
  int grid_index = image_y*width + image_x; 
 
  // cells at border are not modified 
  if (image_x < width - 1 && image_y < height - 1) { 
 
    uint8_t live_neighbors = 0; 
 
    // compute the number of live_neighbors 
    int neighbors[] = {grid_index - width, grid_index - width + 1, grid_index + 1, 
                        grid_index + width, grid_index + width - 1, grid_index - 1}; 
 
    for (int i = 0; i < 6; i++) { 
      live_neighbors += curr_grid[neighbors[i]]; 
    } 
 
    //grid_elem curr_value = constant_parameters.curr_grid[grid_index]; 
    grid_elem curr_value = curr_grid[grid_index]; 
    // value for the next iteration from supplied rule 
    grid_elem next_value = const_parameters.rule->next_state[live_neighbors + curr_value*7]; 
 
    //constant_parameters.next_grid[grid_index] = next_value; 
    next_grid[grid_index] = next_value; 
  } 
} 

 

While the naive implementation didn’t take a significant amount of effort to 

create, improving on it was a long process of trial and error. We spent time working on a 

number of approaches to improve the algorithm, and for a long while we had no 



success, with none of our approaches having a speedup greater than that of the naive 

implementation. Early on we realized that this would be a difficult task due to the simple 

nature of the automaton algorithm, where the majority of time is spent being held up by 

memory reads rather than actually doing computations. Because of this we mainly tried 

to focus on decreasing memory accesses with our attempts. Some of these 

unsuccessful attempts include: 

● Shared Memory: We had each block create an array in its shared memory, 

which would be filled in with the current values in the region in the grid that its 

threads would modify. Instead of accessing the global grid for reads, threads 

would access this grid. We believe that the failure for this approach to give us a 

speedup is due to the cells not being accessed enough (only a maximum of 7 

reads - and no writes - per cell) for shared memory to be more efficient than the 

GPU’s internal tricks. In addition, to get information from the border of cells 

surrounding the block’s area, which is needed in the computation, dummy 

threads whose only purpose was to load the values of the border cells into 

shared memory had to be created, increasing the method’s overhead. 

● Multiple threads per cell: We simply had single threads compute the next state 

of 2 threads instead of one. While this was unsuccessful at first, we ended up 

revisiting the idea in a later approach. 

●  Skipping dead blocks: We created a new array in memory with an index for 

every block of threads in the kernel. The purpose of this array was to record 

whether a block had or was adjacent to any live cells. Every thread of a block 



checked this value at the beginning of the kernel, and if they didn’t have any live 

cells they could simply stop computation there, as a block with all dead cells 

would have no way of gaining live cells unless there were live cells on its 

perimeter. Additional work had to be done to update the new grid every cycle. 

The problem with this approach was that even when a block of threads all 

stopped their computation early, they still contributed to a significant amount to 

the total runtime due to the time cost of actually starting the threads up in the 

GPU. In addition to this, accesing the value in the new grid was very costly, 

especially since hundreds of threads would be trying to access the same value at 

once, leading to contention.  

● List of active cells: The approach we spent the most time working on took the 

previous approaches’ same basic concept of skipping the computation of the 

next state of dead cells. As the biggest problem with that approach was the still 

significant amount of time that threads for cells contributed, we thought that a 

good way to improve performance would be for there to not even be threads for 

dead cells in the first place. To do this, each cycle we created an array of all the 

cells that are alive or have alive neighbors, and only create threads for cells on 

this list. This dramatically reduced the number of threads being created per cycle, 

therefore significantly reducing the time spent in the kernel. The catch to this was 

the fact that the time required to create the list every cycle was extremely large, 

initially increasing the runtime by over 100 times. We were eventually able to 

make the algorithm for creating the list more efficient, reducing most of its work to 



a single exclusive scan. However, this scan still took up over 95% of the 

execution time. 

 

Final Implementation: 

For our final implementation we decided to use a lookup table to store 

precomputed cells based on certain cell configurations. In this approach we first store 

the state of each cell as a single bit and we assign our grid element size to be a single 

byte, thus each grid element contains 8 cells. 

 

The diagram above shows 1 grid element (8 cells) that is to be computed, and the 

purple cells are the neighboring cells required for performing the next state computation.  

Each cuda thread receives one grid element that needs to be updated. 

The thread then computes the index for the left half of the grid element using bitwise 

operations which are very fast. This is repeated for the right half of the grid element. 

 

 



 

Fig 4. Left half index calculation 

 

 

 

Fig 5. Right half index calculation 

 

 



 

Fig 6. Cell configuration as a 16 bit index number 

 

 

The resulting 16 bit number is used as an index into the lookup table which returns a 4 

bit number, representing the next states of the 4 cells. Since a 16 bit number is used as 

an index, the lookup table contains 216 elements.  

 

// kernel_single_iteration (CUDA device code) 
// 
// compute a single iteration on the grid, putting the results in next_grid 
__global__ void kernel_single_iteration(grid_elem* curr_grid, grid_elem* next_grid) { 
  // cells at border are not modified 
  int x = blockIdx.x * blockDim.x + threadIdx.x + 1; 
  int y = blockIdx.y * blockDim.y + threadIdx.y + 1; 
 
  int width = const_params.grid_width; 
  int height = const_params.grid_height; 
  int cols = const_params.num_cols; 
  // index in the grid of this thread 
  int grid_index = y*cols + x; 
 
  // cells at border are not modified 
  if (x >= cols - 1 || y >= height - 1) 
      return; 
  int left_col  = x - 1; 
  int right_col = x + 1; 
  int y_above   = y - 1 ; 
  int y_below   = y + 1; 
 
  //grab cells from the left column 
  int buffer_top = 0; 
  int buffer_mid = curr_grid[left_col + cols*y] << 16; 
  int buffer_bot= curr_grid[left_col + cols*y_below] << 16; 
 
  //grab cells from the middle column 
  buffer_top  = curr_grid[x + cols*y_above] << 8; 
  buffer_mid |= curr_grid[x + cols*y] << 8; 
  buffer_bot |= curr_grid[x + cols*y_below] << 8; 
 
  //grab cells from the right column 



  buffer_top |= curr_grid[right_col + cols*y_above]; 
  buffer_mid |= curr_grid[right_col + cols*y]; 
 
  int left_half_index = (buffer_top & 0xf800) | ((buffer_mid & 0x1f800) >> 6) | ((buffer_bot 
& 0x1f000) >> 12); 
  int right_half_index = ((buffer_top & 0xf80) << 4) | ((buffer_mid) & 0x1f80) >> 2 | 
((buffer_bot & 0x1f00) >> 8); 
 
  //left val and right val each contain 4 cells/bits 
  grid_elem new_val = 0; 
  grid_elem left_val = const_params.lookup_table[left_half_index]; 
  grid_elem right_val = const_params.lookup_table[right_half_index]; 
  new_val = (left_val << 4) | right_val; 
  next_grid[grid_index] = new_val; 
} 

 

 

The lookup table is constructed in much the same way except in reverse. It iterates 

through all numbers 0 to 216  - 1, treats the 16 bit number as a cell configuration and 

computes the next states using bitwise operations. 

//computing lookup table for a given index 
//@param next_state: array representation of automata rule 
grid_elem* create_lookup_table(grid_elem* next_state) { 
  grid_elem* table = (grid_elem*) malloc(sizeof(grid_elem) * (1<<16)); 
  int max = 1<<16; 
  for (int num = 0; num < max; num++) { 
    int i = num; 
    grid_elem res = 0; 
    for (int j = 0; j < 4; j++) { 
        int center = ((i >> 6) & 1); 
        int live_neighbors  = (i & 1) + ((i >> 1) & 1) + ((i >> 5) & 1) + ((i >> 7) & 1) + 
((i >> 11) & 1) + ((i >> 12) & 1); 
        int alive = next_state[live_neighbors + center*7]; //alive or not based on rule 
        res |= alive << j; 
        i >>= 1; 
    } 
    table[num] = res; 
  } 
  return table; 
} 

 

We have also tried to have the lookup table store the next state of 8 cells at once, thus 

each thread would only require 1 memory access instead of 2 as in our implementation. 

However this approach turned out to be worse since the number of elements now 



becomes 228. This exponentially larger lookup table decreases the number of cache hits 

and thus each array access is more likely to be slower. 

 

Performance: 

All performance results were tested on the latedays machines using the Nvidia K40 

GPU.  The tests used a 34/2 rule where an alive cell stays alive if it has 3 or 4 live 

neighbors and a dead cell becomes alive if there are exactly 2 live neighbors. 

 

 

The above graph illustrates how both parallel implementations run much faster than the 

serial implementation for a large number of iterations. 



 

The speedup graph relative to the serial implementation is quite interesting. The naive 

parallel approach provides a constant speedup of 40x regardless of the number of 

iterations, whereas the lookup parallel approach speedup jumps from 67x to 85x at 

1000 iterations and then stays constant. We hypothesize this is because by this point 

most of the grid is homogenous, and thus reads to the the lookup table hit the cache 

more often, giving significant speedups. 



 

This graph illustrates the previous point, except now it displays the relative speedup of 

the lookup parallel approach to the naive parallel approach. For a low number of 

iterations the lookup achieves a 1.6x speedup, which increases to 2.2x for 1000 

iterations and greater. 



 

Another interesting result can be seen from the graph above: as the grid size increases 

exponentially, the lookup parallel speedup increases linearly. We theorize that this is 

mainly due to the lookup table being more memory efficient. As the number of cells 

becomes greater than the number of cuda threads, each thread in the naive version is 

tasked with more grid elements to compute. Whereas in our final implementation each 

thread updates 8 cells at a time,  

 

 

 

 

 



 

Conclusion: 

 
Fig 7. 132 x 132 grid after 100 iterations of rule 34/2 

 
We originally planned to create a framework for hexagonal automata, that could 

have any number of states and was not limited to the 6 surrounding neighbors for 
updates. However we had trouble parallelizing such a general framework with lots of 
variable parameters and thus settled for a simpler binary cellular automata with simple 
adjustable rules. 
 

In the end we managed to achieve an 85x speedup using our lookup table 
implementation in CUDA, which we are happy with. However we still feel that this could 
still be improved upon by perhaps optimizing the number of neighbor memory accesses. 
We believe that CUDA was the right platform of choice for this project due to the high 
amount of data level parallelism with a large array.  
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